

Getting started

Odak (pronounced “O-dac”) is the fundamental library for scientific computing in optical sciences, computer graphics, and visual perception.
We designed this page to help first-time users, new contributors, and existing users understand where to go within this documentation when they need help with certain aspects of Odak.
If you think you need a refresher or are a beginner willing to learn more about light and computation, we created an entire course named Computational Light for you to get to pace with the computational aspects of light.

Absolute Beginners

	Computational Light Course

New Users

	What is Odak?

	Installation

Use cases

	Computer-generated holography

	General toolkit

	Optical Raytracing

	Machine Learning

	Visual perception

New contributors

	Contributing to Odak

Additional information

	Citing Odak in a scientific publication using Zenodo [https://github.com/kaanaksit/odak#how-to-cite]

	License of Odak [https://github.com/kaanaksit/odak/blob/master/LICENSE.txt]

	Reporting bugs or requesting a feature [https://github.com/kaanaksit/odak/issues]

!!! warning end “Reminder”
We host a Slack group with more than 300 members.
This Slack group focuses on the topics of rendering, perception, displays and cameras.
The group is open to public and you can become a member by following this link [https://complightlab.com/outreach/].
Readers can get in-touch with the wider community using this public group.

Index

What is Odak?

Odak (pronounced “O-dac”) is the fundamental library for scientific computing in optical sciences, computer graphics and visual perception.

Why does it exist?

This question has two answers.
One of them is related to the history of Odak, which is partially answered in the next section.
The other answer lies in what kind of submodules Odak has in it.
Depending on a need of a scientist at all levels or a professional from the industry, these submodules can help the design processes in optics and visual perception.

Odak includes modules for geometric 3D raytracing [https://github.com/kunguz/odak/tree/master/odak/raytracing/], Jones calculus [https://github.com/kunguz/odak/tree/master/odak/jones], wave optics, and a set of tools [https://github.com/kunguz/odak/tree/master/odak/tools] to ease pain in measurement [https://github.com/kunguz/odak/tree/master/odak/measurement], exporting/importing CAD [https://github.com/kunguz/odak/tree/master/odak/tools/asset.py], and visualization [https://github.com/kunguz/odak/tree/master/odak/visualize] during a design process.
We have generated a set of recipes that go well with machine learning approaches compatible with the PyTorch learning framework as provided here [https://github.com/kunguz/odak/tree/master/odak/learn].
We have created many test scripts [https://github.com/kunguz/odak/tree/master/test/] to inspire how you use Odak and helping your design process.
Finally, we have created a distribution system [https://github.com/kunguz/odak/tree/master/odak/manager] to process tasks in parallel across multiple computing resources within the same network.
Odak can either run using CPUs or automatically switch to NVIDIA GPUs [https://github.com/kunguz/odak/tree/master/odak/__init__.py#L8].

History

In the summer of 2011, I, Kaan Akşit [https://kaanaksit.com], was a PhD student.
At the time, I had some understanding of the Python programming language, and I created my first Python based computer game [https://www.youtube.com/watch?v=r9RIzKCGrmU] using pygame, a fantastic library, over a weekend in 2009.
I was actively using Python to deploy packages for the Linux distribution that I supported at the time, Pardus [https://distrowatch.com/table.php?distribution=pardus].
Meantime, that summer, I didn’t have any internship or any vital task that I had to complete.
I was super curious about the internals of the optical design software that I used at the time, ZEMAX.
All of this lead to an exciting never-ending excursion that I still enjoy to this day, which I named Odak.
Odak means focus in Turkish, and pronounced as O-dac.

The very first paper I read to build the pieces of Odak was General Ray tracing procedure" from G.H. Spencer and M.V.R.K Murty, an article on routines for raytracing, published at the Journal of the Optical Society of America, Issue 6, Volume 52, Page 672 [https://doi.org/10.1364/JOSA.52.000672].
It helped to add reflection and refraction functions required in a raytracing routine.
I continuously add to Odak over my entire professional life.
That little raytracing program I wrote in 2011 is now a vital library for my research, and much more than a raytracer.

I can write pages and pages about what happened next.
You can accurately estimate what happened next by checking my website and my cv [https://kaanaksit.com].
But I think the most critical part is always the beginning as it can inspire many other people to follow their thoughts and build their own thing!
I used Odak in my all published papers.
When I look back, I can only say that I am thankful to 2011 me spending a part of his summer in front of a computer to code a raytracer for optical design.
Odak is now more than a raytracer, expanding on many other aspects of light, including vision science, polarization optics, computer-generated holography or machine learning routines for light sciences.
Odak keeps on growing thanks to a body of people that contributed over time [https://github.com/kunguz/odak/blob/master/THANKS.txt].
I will keep it growing in the future and will continually transform into the tool that I need to innovate.
All of it is free as in free-free, and all is sharable as I believe in people.

Computer-Generated Holography

Odak contains essential ingredients for research and development targeting Computer-Generated Holography.
We consult the beginners in this matter to Goodman's Introduction to Fourier Optics book (ISBN-13: 978-0974707723) and Principles of optics: electromagnetic theory of propagation, interference and diffraction of light from Max Born and Emil Wolf (ISBN 0-08-26482-4).
In the rest of this document, you will find engineering notes and relevant functions in Odak that helps you describing complex nature of light on a computer.
Note that, the creators of this documentation are from Computational Displays domain, however the provided submodules can potentially aid other lines of research as well, such as Computational Imaging or Computational Microscopy.

Engineering notes

Note	Description
————-	:————-:
Holographic light transport	This engineering note will give you an idea about how coherent light propagates in free space.
Optimizing phase-only single plane holograms using Odak	This engineering note will give you an idea about how to calculate phase-only holograms using Odak.
Learning the model of a holographic display [https://github.com/complight/realistic_holography]	This link navigates to a project website that provides a codebase that can learn the model of a holographic display using a single complex kernel.
Optimizing three-dimensional multiplane holograms using Odak [https://github.com/complight/realistic_defocus]	This link navigates to a project website that provides a codebase that can help optimize a phase-only hologram representing multiplanar three-dimensional scenes.

Contributing to Odak

Odak is in constant development.
We shape Odak according to the most current needs in our scientific research.
We welcome both users and developers in the open-source community as long as they have good intentions (e.g., scientific research).
For the most recent description of Odak, please consult our description.
If you are planning to use Odak for industrial purposes, please reach out to Kaan Akşit.
All of the Odak contributors are listed in our THANKS.txt [https://github.com/kunguz/odak/blob/master/THANKS.txt] and added to CITATION.cff [https://github.com/kunguz/odak/blob/master/CITATION.cff] regardless of how much they contribute to the project.
Their names are also included in our Digital Object Identifier (DOI) page [https://zenodo.org/record/5526684].

Contributing process

Contributions to Odak can come in different forms.
It can either be code or documentation related contributions.
Historically, Odak has evolved through scientific collaboration, in which authors of Odak identified a collaborative project with a new potential contributor.
You can always reach out to Kaan Akşit to query your idea for potential collaborations in the future.
Another potential place to identify likely means to improve odak is to address outstanding issues of Odak [https://github.com/kunguz/odak/issues].

Code

Odak’s odak directory contains the source code.
To add to it, please make sure that you can install and test Odak on your local computer.
The installation documentation contains routines for installation and testing, please follow that page carefully.

We typically work with pull requests.
If you want to add new code to Odak, please do not hesitate to fork Odak’s git repository and have your modifications on your fork at first.
Once you test the modified version, please do not hesitate to initiate a pull request.
We will revise your code, and if found suitable, it will be merged to the master branch.
Remember to follow numpy convention while adding documentation to your newly added functions to Odak.
Another thing to mention is regarding to the code quality and standard.
Although it hasn’t been strictly followed since the start of Odak, note that Odak follows code conventions of flake8, which can be installed using:

pip3 install flake8

You can always check for code standard violations in Odak by running these two commands:

flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics

There are tools that can automatically fix code in terms of following standards.
One primary tool that we are aware of is autopep8, which can be installed using:

pip3 install autopep8

Please once you are ready to have a pull request, make sure to add a unit test for your additions in test folder, and make sure to test all unit tests by running pytest.
If your system do not have pytest installed, it can be installed using:

pip3 install pytest

Documentation

Under Odak’s source’s root directory, you will find a folder named docs.
This directory contains all the necessary information to generate the pages in this documentation.
If you are interested in improving the documentation of Odak, this directory is the place where you will be adding things.

Odak’s documentation is built using mkdocs [https://www.mkdocs.org/].
At this point, I assume that you have successfully installed Odak on your system.
If you haven’t yet, please follow installation documentation.
To be able to run documentation locally, make sure to have the correct dependencies installed properly:

pip3 install plyfile
pip3 install Pillow
pip3 install tqdm
pip3 install mkdocs-material
pip3 install mkdocstrings

Once you have dependencies appropriately installed, navigate to the source directory of Odak in your hard drive and run a test server:

cd odak
mkdocs serve

If all goes well, you should see a bunch of lines on your terminal, and the final lines should look similar to these:

INFO - Documentation built in 4.45 seconds
INFO - [22:15:22] Serving on http://127.0.0.1:8000/odak/
INFO - [22:15:23] Browser connected: http://127.0.0.1:8000/odak/

At this point, you can start your favourite browser and navigate to http://127.0.0.1:8000/odak to view documentation locally.
This local viewing is essential as it can help you view your changes locally on the spot before actually committing.
One last thing to mention here is the fact that Odak’s docs folder’s structure is self-explanatory.
It follows markdown rules, and mkdocsstrings style is numpy.

Installation

We use odak with Linux operating systems.
Therefore, we don’t know if it can work with Windows or Mac operating systems.
Odak can be installed in multiple ways.
However, our recommended method for installing Odak is using pip [https://pypi.org/project/pip] distribution system.
We update Odak within pip with each new version.
Thus, the most straightforward way to install Odak is to use the below command in a Linux shell:

pip3 install odak

Note that Odak is in constant development.
One may want to install the latest and greatest odak in the source repository for their reasons.
In this case, our recommended method is to rely on pip for installing Odak from the source using:

pip3 install git+https://github.com/kaanaksit/odak

One can also install Odak without pip by first getting a local copy and installing using Python.
Such an installation can be conducted using:

git clone git@github.com:kaanaksit/odak.git
cd odak
pip3 install -r requirements.txt
pip3 install -e .

Notes before running

Some notes should be highlighted to users, and these include:

	Odak installs PyTorch that only uses CPU.
To properly install PyTorch with GPU support, please consult PyTorch website [https://pytorch.org].

Testing an installation

After installing Odak, one can test if Odak has been appropriately installed with its dependencies by running the unit tests.
To be able to run unit tests, make sure to have pytest installed:

pip3 install -U pytest

Once pytest is installed, unit tests can be run by calling:

cd odak
pytest

The tests should return no error.
However, if an error is encountered, please start a new issue [https://github.com/kaanaksit/odak/issues] to help us be aware of the issue.

Machine learning

Odak provides a set of function that implements classical methods in machine learning.
Note that these functions are typically basing on Numpy.
Thus, they do not take advantage from automatic differentiation found in Torch.
The soul reason why these functions exists is because they stand as an example for impelementing basic methods in machine learning.

Visual perception

The perception module of odak focuses on visual perception, and in particular on gaze-contingent perceptual loss functions.

It contains an implementation of a metameric loss function. When used in optimisation tasks, this loss function enforces the optimised image to be a ventral metamer [https://www.nature.com/articles/nn.2889] to the ground truth image.

This loss function is based on previous work on fast metamer generation [https://vr-unity-viewer.cs.ucl.ac.uk/]. It uses the same statistical model and many of the same acceleration techniques (e.g. MIP map sampling) to enable the metameric loss to run efficiently.

Engineering notes

Note	Description
————-	:————-:
Using metameric loss in Odak	This engineering note will give you an idea about how to use the metameric perceptual loss in Odak.

Raytracing

Odak provides a set of function that implements methods used in raytracing.
The ones implemented in Numpy, such as odak.raytracing, are not differentiable.
However, the ones impelemented in Torch, such as odak.learn.raytracing, are differentiable.

General toolkit.

Odak provides a set of functions that can be used for general purpose work, such as saving an image file or loading a three-dimensional point cloud of an object.
These functions are helpful for general use and provide consistency across routine works in loading and saving routines.
When working with odak, we strongly suggest sticking to the general toolkit to provide a coherent solution to your task.

Engineering notes

Note	Description
————-	:————-:
Working with images	This engineering note will give you an idea about how read and write images using odak.
Working with dictionaries	This engineering note will give you an idea about how read and write dictionaries using odak.

 https://github.com/IdleHandsProject/volumetric_display

 ??? quote end “Narrate section”

Light, Computation, and Computational Light

We can establish an understanding of the term Computational Light as we explore the term light and its relation to computation.

What is light?

:octicons-info-24: Informative

Light surrounds us; we see the light and swim in the sea of light.
It is indeed a daily matter that we interact by looking out of our window to see what is outside, turning on the lights of a room, looking at our displays, taking pictures of our loved ones, walking in a night lit by moonlight, or downloading media from the internet.
Light is an eye-catching festival, reflecting, diffracting, interfering, and refracting.
Is light a wave, a ray, or a quantum-related phenomenon?
Is light heavy, or weightless?
Is light the fastest thing in this universe?
Which way does the light go?
In a more general sense, how can we use light to trigger more innovations, positively impact our lives, and unlock the mysteries of life?
We all experience light, but we must dig deep to describe it clearly.

In this introduction, my first intention here is to establish some basic scientific knowledge about light, which will help us understand why it is essential for the future of technology, especially computing.
Note that we will cover more details of light as we make progress through different chapters of this course.
But let’s get this starting with the following statement.
Light is electromagnetic radiation, often described as a bundle of photons, a term first coined by Gilbert Lewis in 1926.

??? question end “Where can I learn more about electric and magnetic fields?”
Beware that the topic of electric and magnetic fields deserves a stand-alone course and has many details to explore.
As an undergraduate student, back in the day, I learned about electric and magnetic fields by following a dedicated class and reading this book: Cheng, David Keun. "Fundamentals of engineering electromagnetics." (1993). [https://www.amazon.com/Fundamentals-Engineering-Electromagnetics-David-Cheng/dp/0201566117/ref=sr_1_2?qid=1685483168&refinements=p_28%3AFundamentals+of+Engineering+Electromagnetics&s=books&sr=1-2] [@cheng1993fundamentals]

??? question end “What is a photon?”
Let me adjust this question a bit: What model is good for describing a photon?
There is literature describing a photon as a single particle, and works show photons as a pack of particles.
Suppose you want a more profound understanding than stating that it is a particle.
In that case, you may want to dive deep into existing models in relation to the relativity concept: Roychoudhuri, C., Kracklauer, A. F., & Creath, K. (Eds.). (2017). The nature of light: What is a photon?. CRC Press. [https://www.amazon.com/Nature-Light-Optical-Science-Engineering/dp/1420044249] [@roychoudhuri2017nature]

??? question end “Where can I learn more about history of research on light?”
There is a website showing noticeable people researching on light since ancient times and their contributions to the research on light.
To reach out to this website to get a crash course, click here [https://photonterrace.net/en/photon/history/].

Let me highlight that for anything to be electromagnetic, it must have electric and magnetic fields.
Let us start with this simple drawing to explain the characteristics of this electromagnetic radiation, light.
Note that this figure depicts a photon at the origin of XYZ axes.
But bear in mind that a photon’s shape, weight, and characteristics are yet to be fully discovered and remain an open research question.
Beware that the figure depicts a photon as a sphere to provide ease of understanding.
It does not mean that photons are spheres.

 Computer-Generated Holography

 ??? quote end “Narrate section”

Computer-Generated Holography

In this section, we introduce Computer-Generated Holography (CGH) [@born2013principles, @goodman2005introduction] as another emerging method to simulate light.
CGH offers an upgraded but more computationally expensive way to simulating light concerning the raytracing method described in the previous section.
This section dives deep into CGH and will explain how CGH differs from raytracing as we go.

What is holography?

:octicons-info-24: Informative

Holography is a method in Optical sciences to represent light distribution using amplitude and phase of light.
In much simpler terms, holography describes light distribution emitted from an object, scene, or illumination source over a surface by treating the light as a wave.
The primary difference of holography concerning raytracing is that it accounts not only amplitude or intensity of light but also the phase of light.
Unlike classical raytracing, holography also includes diffraction and interference phenomena.
In raytracing, the smallest building block that defines light is a ray, whereas, in holography, the building block is a light distribution over surfaces.
In other terms, while raytracing traces rays, holography deals with surface-to-surface light transfer.

??? tip end “Did you know this source?”
There is an active repository on GitHub, where latest CGH papers relevant to display technologies are listed.
Visit GitHub:bchao1/awesome-holography [https://github.com/bchao1/awesome-holography] for more.

What is a hologram?

:octicons-info-24: Informative

Hologram is either a surface or a volume that modifies the light distribution of incoming light in terms of phase and amplitude.
Diffraction gratings, Holographic Optical Elements, or Metasurfaces are good examples of holograms.
Within this section, we also use the term hologram as a means to describe a lightfield or a slice of a lightfield.

What is Computer-Generated Holography?

:octicons-info-24: Informative

It is the computerized version (discrete sampling) of holography.
In other terms, whenever you can program the phase or amplitude of light, this will get us to Computer-Generated Holography.

??? question end “Where can I find an extensive summary on CGH?”
You may be wondering about the greater physical details of CGH.
In this case, we suggest our readers watch the video below.
Please watch this video for an extensive summary on CGH [@kavakli2022optimizing].

 Fundamentals and Standards

 ??? quote end “Narrate section”

Fundamentals and Standards

This chapter will reveal some important basic information you will use in the rest of this course.
In addition, we will also introduce you to a structure where we establish some standards to decrease the chances of producing buggy or incompatible codes.

Required Production Environment :material-alert-decagram:{ .mdx-pulse title=”Too important!” }

:octicons-info-24: Informative ·
:octicons-beaker-24: Practical

We have provided some information in prerequisites.
This information includes programming language requirements, required libraries, text editors, build environments, and operating system requirements.
For installing our library, odak, we strongly advise using the version in the source repository.
You can install odak from the source repository using your favorite terminal and operating system:

pip3 install git+https://github.com/kaanaksit/odak

Note that your production environment meaning your computer and required software for this course is important.
To avoid wasting time in the next chapters and get the most from this lecture, please ensure that you have dedicated enough time to set everything up as it should.

Production Standards :material-alert-decagram:{ .mdx-pulse title=”Too important!” }

:octicons-info-24: Informative

In this course, you will be asked to code and implement simulations related to the physics of light.
Your work, meaning your production, should strictly follow certain habits to help build better tools and developments.

Subversion and Revision Control

:octicons-info-24: Informative ·
:octicons-beaker-24: Practical

As you develop your code for your future homework and projects, you will discover that many things could go wrong.
For example, the hard drive that contains the only copy of your code could be damaged, or your most trusted friend (so-called) can claim that she compiled most of the work, and gets her credit for it, although that is not the case.
These are just a few potential cases that may happen to you.
On the other hand, in business life, poor code control can cause companies to lose money by releasing incorrect codes or researchers to lose their reputations as their work is challenging to replicate.
How do you claim in that case that you did your part?
What is the proper method to avoid losing data, time, effort, and motivation?
In short, what is the way to stay out of trouble?

This is where the subversion, authoring, and revision control systems come into play, especially, for the example cases discussed in the previous paragraph.
In today’s world, Git [https://git-scm.com/] is a widespread version control system adopted by major websites such as GitHub [https://github.com/] or Gitlab [https://about.gitlab.com/].
We will not dive deep into how to use Git and all its features, but I will try to highlight parts that are essential for your workflow.
I encourage you to use Git for creating a repository for every one of your tasks in the future.
You can either keep this repository in your local and constantly back up somewhere else (suggested to people knowing what they are doing) or use these online services such as GitHub [https://github.com/] or Gitlab [https://about.gitlab.com/].
I also encourage you to use the online services if you are a beginner.

For each operating system, installing Git has its processes, but for an Ubuntu operating system, it is as easy as typing the following commands in your terminal:

sudo apt install git

Let us imagine that you want to start a repository on GitHub.
Make sure to create a private repository, and please only go public with any repository once you feel it is at a state where it can be shared with others.
Once you have created your repository on GitHub, you can clone the repository using the following command in a terminal:

git clone REPLACEWITHLOCATIONOFREPO

You can find out about the repository’s location by visiting the repository’s website that you have created.
The location is typically revealed by clicking the code button, as depicted in the below screenshot.

 Modeling light with rays

 ??? quote end “Narrate section”

Modeling light with rays

Modeling light plays a crucial role in describing events based on light and helps designing mechanisms based on light (e.g., Realistic graphics in a video game, display or camera).
This chapter introduces the most basic description of light using geometric rays, also known as raytracing.
Raytracing has a long history, from ancient times to current Computer Graphics.
Here, we will not cover the history of raytracing.
Instead, we will focus on how we implement simulations to build “things” with raytracing in the future.
As we provide algorithmic examples to support our descriptions, readers should be able to simulate light on their computers using the provided descriptions.

??? question end “Are there other good resources on modeling light with rays?”
When I first started coding Odak, the first paper I read was on raytracing.
Thus, I recommend that paper for any starter:

* [Spencer, G. H., and M. V. R. K. Murty. "General ray-tracing procedure." JOSA 52, no. 6 (1962): 672-678.](https://doi.org/10.1364/JOSA.52.000672) [@spencer1962general]

Beyond this paper, there are several resources that I can recommend for curious readers:

* [Shirley, Peter. "Ray tracing in one weekend." Amazon Digital Services LLC 1 (2018): 4.](https://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf) [@shirley2018ray]
* [Morgan McGuire (2021). The Graphics Codex. Casual Effects.](https://graphicscodex.com/) [@mcguire2018graphics]

Ray description :material-alert-decagram:{ .mdx-pulse title=”Too important!” }

:octicons-info-24: Informative ·
:octicons-beaker-24: Practical

We have to define what “a ray” is.
A ray has a starting point in Euclidean space ($x_0, y_0, z_0 \in \mathbb{R}$).
We also have to define direction cosines to provide the directions for rays.
Direction cosines are three angles of a ray between the XYZ axis and that ray ($\theta_x, \theta_y, \theta_z \in \mathbb{R}$).
To calculate direction cosines, we must choose a point on that ray as $x_1, y_1,$ and z_1 and we calculate its distance to the starting point of x_0, y_0 and z_0:

$$
x_{distance} = x_1 - x_0, \
y_{distance} = y_1 - y_0, \
z_{distance} = z_1 - z_0.
$$

Then, we can also calculate the Euclidian distance between starting point and the point chosen:

$$
s = \sqrt{x_{distance}^2 + y_{distance}^2 + z_{distance}^2}.
$$

Thus, we describe each direction cosines as:

$$
cos(\theta_x) = \frac{x_{distance}}{s}, \
cos(\theta_y) = \frac{y_{distance}}{s}, \
cos(\theta_z) = \frac{z_{distance}}{s}.
$$

Now that we know how to define a ray with a starting point, x_0, y_0, z_0 and a direction cosine, $cos(\theta_x), cos(\theta_y), cos(\theta_z)$, let us carefully analyze the parameters, returns, and source code of the provided two following functions in odak dedicated to creating a ray or multiple rays.

=== “:octicons-file-code-16: odak.learn.raytracing.create_ray”

::: odak.learn.raytracing.create_ray

=== “:octicons-file-code-16: odak.learn.raytracing.create_ray_from_two_points”

::: odak.learn.raytracing.create_ray_from_two_points

In the future, we must find out where a ray lands after a certain amount of propagation distance for various purposes, which we will describe in this chapter.
For that purpose, let us also create a utility function that propagates a ray to some distance, d, using x_0, y_0, z_0 and $cos(\theta_x), cos(\theta_y), cos(\theta_z)$:

$$
x_{new} = x_0 + cos(\theta_x) d,\
y_{new} = y_0 + cos(\theta_y) d,\
z_{new} = z_0 + cos(\theta_z) d.
$$

Let us also check the function provided below to understand its source code, parameters, and returns.
This function will serve as a utility function to propagate a ray or a batch of rays in our future simulations.

=== “:octicons-file-code-16: odak.learn.raytracing.propagate_ray”

::: odak.learn.raytracing.propagate_ray

It is now time for us to put what we have learned so far into an actual code.
We can create many rays using the two functions, odak.learn.raytracing.create_ray_from_two_points and odak.learn.raytracing.create_ray.
However, to do so, we need to have many points in both cases.
For that purpose, let’s carefully review this utility function provided below.
This utility function can generate grid samples from a plane with some tilt, and we can also define the center of our samples to position points anywhere in Euclidean space.

=== “:octicons-file-code-16: odak.learn.tools.grid_sample”

::: odak.learn.tools.grid_sample

The below script provides a sample use case for the functions provided above.
I also leave comments near some lines explaining the code in steps.

=== “:octicons-file-code-16: test_learn_ray.py”

```python 
--8<-- "test/test_learn_ray.py"
```

1. Required libraries are imported.
2. Defining a starting point, in order X, Y and Z locations.
 Size of starting point could be s1] or [1, 1].
3. Defining some end points on a plane in grid fashion.
4. `odak.learn.raytracing.create_ray_from_two_points` is verified with an example! Let's move on to `odak.learn.raytracing.create_ray`.
5. Creating starting points with `odak.learn.tools.grid_sample` and defining some angles as the direction using `torch.randn`.
 Note that the angles are in degrees.
6. `odak.learn.raytracing.create_ray` is verified with an example!
7. `odak.learn.raytracing.propagate_a_ray` is verified with an example!
8. Set it to `True` to enable visualization.

The above code also has parts that are disabled (see visualize variable).
We disabled these lines intentionally to avoid running it at every run.
Let me talk about these disabled functions as well.
Odak offers a tidy approach to simple visualizations through packages called Plotly [https://plotly.com/] and kaleido.
To make these lines work by setting visualize = True, you must first install plotly in your work environment.
This installation is as simple as pip3 install plotly kaleido in a Linux system.
As you install these packages and enable these lines, the code will produce a visualization similar to the one below.
Note that this is an interactive visualization where you can interact with your mouse clicks to rotate, shift, and zoom.
In this visualization, we visualize a single ray (green line) starting from our defined starting point (red dot) and ending at one of the end_points (blue dot).
We also highlight three axes with black lines to provide a reference frame.
Although odak.visualize.plotly offers us methods to visualize rays quickly for debugging, it is highly suggested to stick to a low number of lines when using it (e.g., say not exceeding 100 rays in total).
The proper way to draw many rays lies in modern path-tracing renderers such as Blender [https://www.blender.org/].

??? question end “How can I learn more about more sophisticated renderers like Blender?”
Blender is a widely used open-source renderer that comes with sophisticated features.
It is user interface could be challenging for newcomers.
A blog post published by SIGGRAPH Research Career Development Committee offers a neat entry-level post titled Rendering a paper figure with Blender [https://www.silviasellan.com/blender_course.html] written by Silvia Sellán [https://www.silviasellan.com/].

In addition to Blender, there are various renderers you may be happy to know about if you are curious about Computer Graphics.
[Mitsuba 3](https://www.mitsuba-renderer.org/) is another sophisticated rendering system based on a SIGGRAPH paper titled [`Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering`](https://rgl.epfl.ch/publications/Jakob2022DrJit) [@jakob2022dr] from [Wenzel Jakob](https://rgl.epfl.ch/people/wjakob).

If you know any other, please share it with the class so that they also learn more about other renderers.

??? abstract end “Challenge: Blender meets Odak [https://github.com/kaanaksit/odak/discussions/71]”
In light of the given information, we challenge readers to create a new submodule for Odak.
Note that Odak has odak.visualize.blender submodule.
However, at the time of this writing, this submodule works as a server that sends commands to a program that has to be manually triggered inside Blender.
Odak seeks an upgrade to this submodule, where users can draw rays, meshes, or parametric surfaces easily in Blender with commands from Odak.
This newly upgraded submodule should require no manual processes.
To add these to odak, you can rely on the pull request feature on GitHub.
You can also create a new engineering note for your new submodule in docs/notes/odak_meets_blender.md.

Intersecting rays with surfaces :material-alert-decagram:{ .mdx-pulse title=”Too important!” }

:octicons-info-24: Informative ·
:octicons-beaker-24: Practical

Rays we have described so far help us explore light and matter interactions.
Often in simulations, these rays interact with surfaces.
In a simulation environment for optical design, equations often describe surfaces continuously.
These surface equations typically contain a number of parameters for defining surfaces.
For example, let us consider a sphere, which follows a standard equation as follows,

$$
r^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2,
$$

Where r represents the diameter of that sphere, x_0, y_0, z_0 defines the center location of that sphere, and x, y, z are points on the surface of a sphere.
When testing if a point is on a sphere, we use the above equation by inserting the point to be tested as x, y, z into that equation.
In other words, to find a ray and sphere intersection, we must identify a distance that propagates our rays a certain amount and lends on a point on that sphere, and we can use the above sphere equation for identifying the intersection point of that rays.
As long the surface equation is well degined, the same strategy can be used for any surfaces.
In addition, if needed for future purposes (e.g., reflecting or refracting light off the surface of that sphere), we can also calculate the surface normal of that sphere by drawing a line by defining a ray starting from the center of that sphere and propagating towards the intersection point.
Let us examine, how we can identify intersection points for a set of given rays and a sphere by examining the below function.

=== “:octicons-file-code-16: odak.learn.raytracing.intersect_w_sphere”

::: odak.learn.raytracing.intersect_w_sphere

The odak.learn.raytracing.intersect_w_sphere function uses an optimizer to identify intersection points for each ray.
Instead, a function could have accomplished the task with a closed-form solution without iterating over the intersection test, which could have been much faster than the current function.
If you are curious about how to fix the highlighted issue, you may want to see the challenge provided below.

Let us examine how we can use the provided sphere intersection function with an example provided at the end of this subsection.

=== “:octicons-file-code-16: test_learn_ray_intersect_w_a_sphere.py”

```python 
--8<-- "test/test_learn_ray_intersect_w_a_sphere.py"
```

1. Here we provide an example use case for `odak.learn.raytracing.intersect_w_sphere` by providing a sphere and a batch of sample rays.
2. Uncomment for running visualization.

 Prerequisites and general information

 ??? quote end “Narrate section”

Prerequisites and general information

You have reached the website for the Computational Light Course.

This page is the starting point for the Computational Light course.
Readers can follow the course material found on these pages to learn more about the field of Computational Light.
I encourage readers to carefully read this page to decide if they want to continue with the course.

Brief course description

Computational Light is a term that brings the concepts in computational methods with the characteristics of light. In other words, wherever we can program the qualities of light, such as its intensity or direction, this will get us into the topics of Computational Light. Some well-known subfields of Computational Light are Computer Graphics, Computational Displays, Computational Photography, Computational Imaging and Sensing, Computational Optics and Fabrication, Optical Communication, and All-optical Machine Learning.

 <no title>

 Color Science

Color Science

Biomimetic Eye Modeling & Deep Neuromuscular Oculomotor Control [https://www.andrew.cmu.edu/user/aslakshm/pdfs/siggraph19_eye.pdf]

 Holographic light transport

Holographic light transport

Odak contains essential ingredients for research and development targeting Computer-Generated Holography.
We consult the beginners in this matter to Goodman's Introduction to Fourier Optics book (ISBN-13: 978-0974707723) and Principles of optics: electromagnetic theory of propagation, interference and diffraction of light from Max Born and Emil Wolf (ISBN 0-08-26482-4).
This engineering note will provide a crash course on how light travels from a phase-only hologram to an image plane.

|

 Optimizing holograms using Odak

Optimizing holograms using Odak

This engineering note will give you an idea about how to optimize phase-only holograms using Odak.
We consult the beginners in this matter to Goodman's Introduction to Fourier Optics (ISBN-13: 978-0974707723) and Principles of optics: electromagnetic theory of propagation, interference and diffraction of light from Max Born and Emil Wolf (ISBN 0-08-26482-4).
Note that the creators of this documentation are from the Computational Displays domain.
However, the provided submodules can potentially aid other lines of research as well, such as Computational Imaging or Computational Microscopy.

The optimization that is referred to in this document is the one that generates a phase-only hologram that can reconstruct a target image.
There are multiple ways in the literature to optimize a phase-only hologram for a single plane, and these include:

Gerchberg-Saxton and Yang-Yu algorithms:

	Yang, G. Z., Dong, B. Z., Gu, B. Y., Zhuang, J. Y., & Ersoy, O. K. (1994). Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied optics, 33(2), 209-218.

Stochastic Gradient Descent based optimization:

	Chen, Y., Chi, Y., Fan, J., & Ma, C. (2019). Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval. Mathematical Programming, 176(1), 5-37.

Odak provides functions to optimize phase-only holograms using Gerchberg-Saxton algorithm or the Stochastic Gradient Descent based approach.
The relevant functions here are odak.learn.wave.stochastic_gradient_descent and odak.learn.wave.gerchberg_saxton.
We will review both of these definitions in this document.
But first, let’s get prepared.

Preparation

We first start with imports, here is all you need:

from odak.learn.wave import stochastic_gradient_descent, calculate_amplitude, calculate_phase
import torch

We will also be needing some variables that defines the wavelength of light that we work with:

wavelength = 0.000000532

Pixel pitch and resolution of the phase-only hologram or a phase-only spatial light modulator that we are simulating:

dx = 0.0000064
resolution = [1080, 1920]

Define the distance that the light will travel from optimized hologram.

distance = 0.15

We have to set a target image.
You can either load a sample image here or paint a white rectangle on a white background like in this example.

target = torch.zeros(resolution[0],resolution[1])
target[500:600,400:450] = 1.

Surely, we also have to set the number of iterations and learning rate for our optimizations.
If you want the GPU support, you also have to set the cuda as True.
Propagation type has to be defined as well.
In this example, we will use transfer function Fresnel approach.
For more on propagation types, curious readers can consult
Computational Fourier Optics David Vuelz (ISBN13:9780819482044).

iteration_number = 100
learning_rate = 0.1
cuda = True
propagation_type = 'TR Fresnel'

This step concludes our preparations.
Let’s dive into optimizing our phase-only holograms.
Depending on your choice, you can either optimize using Gerchberg-Saxton approach or the Stochastic Gradient Descent approach.
This document will only show you Stochastic Gradient Descent approach as it is the state of art.
However, optimizing a phase-only hologram is as importing:

from odak.learn.wave import gerchberg_saxton

and almost as easy as replacing stochastic_gradient_descent with gerchberg_saxton in the upcoming described hologram routine.
For greater details, consult to documentation of odak.learn.wave.

Stochastic Gradient Descent approach

We have prepared a function for you to avoid compiling a differentiable hologram optimizer from scratch.

hologram, reconstructed = stochastic_gradient_descent(
 target,
 wavelength,
 distance,
 dx,
 resolution,
 'TR Fresnel',
 iteration_number,
 learning_rate=learning_rate,
 cuda=cuda
)

Iteration: 99 loss:0.0003

Congratulations! You have just optimized a phase-only hologram that reconstruct your target image at the target depth.

Surely, you want to see what kind of image is being reconstructed with this newly optimized hologram.
You can save the outcome to an image file easily.
Odak provides tools to save and load images.
First, you have to import:

from odak.learn.tools import save_image,load_image

As you can recall, we have created a target image earlier that is normalized between zero and one.
The same is true for our result, reconstructed.
Therefore, we have to save it correctly by taking that into account.
Note that reconstructed is the complex field generated by our optimized hologram variable.
So, we need to save the reconstructed intensity as humans and cameras capture intensity but not a complex field with phase and amplitude.

reconstructed_intensity = calculate_amplitude(reconstructed)**2
save_image('reconstructed_image.png',reconstructed_intensity,cmin=0.,cmax=1.)

True

To save our hologram as an image so that we can load it to a spatial light modulator, we have to normalize it between zero and 255 (dynamic range of a typical image on a computer).

P.S. Depending on your SLM’s calibration and dynamic range things may vary.

slm_range = 2*3.14
dynamic_range = 255
phase_hologram = calculate_phase(hologram)
phase_only_hologram = (phase_hologram%slm_range)/(slm_range)*dynamic_range

It is now time for saving our hologram:

save_image('phase_only_hologram.png',phase_only_hologram)

True

In some cases, you may want to add a grating term to your hologram as you will display it on a spatial light modulator.
There are various reasons for that, but the most obvious is getting rid of zeroth-order reflections that are not modulated by your hologram.
In case you need it is as simple as below:

from odak.learn.wave import linear_grating
grating = linear_grating(resolution[0],resolution[1],axis='y').to(phase_hologram.device)
phase_only_hologram_w_grating = phase_hologram+calculate_phase(grating)

And let’s save what we got from this step:

phase_only_hologram_w_grating = (phase_only_hologram_w_grating%slm_range)/(slm_range)*dynamic_range
save_image('phase_only_hologram_w_grating.png',phase_only_hologram_w_grating)

True

See also

For more engineering notes, follow:

	Computer Generated-Holography

 See also

 This engineering note will give you an idea about using the metameric perceptual loss in odak.
This note is compiled by David Walton.
If you have further questions regarding this note, please email David at david.walton.13@ucl.ac.uk.

Our metameric loss function works in a very similar way to built in loss functions in pytorch, such as torch.nn.MSELoss().
However, it has a number of parameters which can be adjusted on creation (see the documentation).
Additionally, when calculating the loss a gaze location must be specified. For example:

loss_func = odak.learn.perception.MetamericLoss()
loss = loss_func(my_image, gt_image, gaze=[0.7, 0.3])

The loss function caches some information, and performs most efficiently when repeatedly calculating losses for the same image size, with the same gaze location and foveation settings.

We recommend adjusting the parameters of the loss function to match your application.
Most importantly, please set the real_image_width and real_viewing_distance parameters to correspond to how your image will be displayed to the user.
The alpha parameter controls the intensity of the foveation effect.
You should only need to set alpha once - you can then adjust the width and viewing distance to achieve the same apparent foveation effect on a range of displays & viewing conditions.
Note that we assume the pixels in the displayed image are square, and derive the height from the image dimensions.

We also provide two baseline loss functions BlurLoss and MetamerMSELoss which function in much the same way.

At the present time the loss functions are implemented only for images displayed to a user on a flat 2D display (e.g. an LCD computer monitor).
Support for equirectangular 3D images is planned for the future.

See also

Visual perception

 <no title>

 ::: odak.fit

 <no title>

 ::: odak.learn.models
::: odak.learn.models.components
::: odak.learn.models.models

 <no title>

 ::: odak.learn.perception
::: odak.learn.perception.blur_loss
::: odak.learn.perception.color_conversion
::: odak.learn.perception.foveation
::: odak.learn.perception.metameric_loss
::: odak.learn.perception.metameric_loss_uniform
::: odak.learn.perception.metamer_mse_loss
::: odak.learn.perception.radially_varying_blur
::: odak.learn.perception.spatial_steerable_pyramid
::: odak.learn.perception.steerable_pyramid_filters
::: odak.learn.perception.util

 <no title>

 ::: odak.learn.raytracing
::: odak.learn.raytracing.boundary
::: odak.learn.raytracing.primitives
::: odak.learn.raytracing.ray

 <no title>

 ::: odak.learn.tools
::: odak.learn.tools.file
::: odak.learn.tools.fitcurve
::: odak.learn.tools.loss
::: odak.learn.tools.matrix
::: odak.learn.tools.sample
::: odak.learn.tools.transformation
::: odak.learn.tools.vector

 <no title>

 ::: odak.learn.wave.classical
::: odak.learn.wave.hardware
::: odak.learn.wave.lens
::: odak.learn.wave.loss
::: odak.learn.wave.optimizers
::: odak.learn.wave.propagators
::: odak.learn.wave.util

 <no title>

 ::: odak.raytracing
::: odak.raytracing.boundary
::: odak.raytracing.primitives
::: odak.raytracing.ray

 <no title>

 ::: odak.tools
::: odak.tools.asset
::: odak.tools.conversions
::: odak.tools.file
::: odak.tools.matrix
::: odak.tools.sample
::: odak.tools.vector
::: odak.tools.transformation

 <no title>

 ::: odak.wave
::: odak.wave.classical
::: odak.wave.lens
::: odak.wave.utils
::: odak.wave.vector

